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A B S T R A C T

As our society becomes digital and communication technology develops, global collaboration is an inevitable
trend, where data-sharing is a critical component of cooperation across organizations. Identity privacy and data
integrity are vital issues in data-sharing. Existing works struggle to address these problems simultaneously,
either privacy leaking or privacy abuse. In this work, we proposed OWL, a data-sharing scheme that (1)
provides users on-demand anonymity and (2) allows users to verify data integrity while preserving anonymity.
To achieve (1) OWL enables controllable anonymity that allows de-anonymity for the malicious while keeping
anonymity to the honest providers based on traceable ring signature technology. To achieve (2), OWL designs a
data integrity auditing scheme that uses vector commitment to verify data integrity without privacy leakage.
Furthermore, OWL employs the blockchain to store immutable auxiliary information for the integrity and
controllable anonymity. We also employ the state channel to resolve the performance bottleneck of blockchain
and design methods to improve the usage of the state channel for group users. We prove that OWL achieves
controllable anonymity and integrity. Finally, we implement the experiment to evaluate the efficiency of OWL.
. Introduction

In the evolving global economy, data regarded as the digital oil has
een recognized as a central issue for promoting societal development.
tatista, an international authoritative organization, forecasts that the
ig data market size revenue will come to $ 103 billion in 2027.2
ealizing data-sharing across various consumers and enterprises is
ot only a prerequisite for further exerting data value, but also an
nevitable choice for the in-depth development of digital society [1,2].
any groups, teams, and organizations have adopted project hosting

latforms, such as Github, BitBucket and Springloops, to share data
nternally or externally.

As shown in Fig. 1, the typical data-sharing model is relatively
imple: the group of data providers that have limited storage resources
utsource the data to the data-sharing platform (DSP). The DSP is
ased on the cloud with high storage capacity, and the data consumers
equest it to obtain the data for further work. The data integrity and
rovider privacy matter in this model [3,4].

∗ Corresponding author at: The School of Cyberspace Security, Hainan University, Haikou, 570228, China.
E-mail address: leiluono1@163.com (H. Lei).

1 The first two authors contributed equally to this work.
2 Big data market size revenue forecast worldwide from 2011 to 2027.

• Data integrity. It is the main concern of data outsourcing [5].
The data in the DSP may be a risk of loss or corruption [6].
For example, Amazon, Dropbox, and Tencent Cloud lost their
data due to natural disasters, software vulnerabilities and human
error [7]. The use of incomplete data can cause economic damage
for data consumers and reputation damage for data providers.

• Provider privacy. The provider’s identity is also confidential,
since they could disclose some significant information about the
shared (even encrypted) data [8]. For example, once a data
consumer finds that the shared data is a market user’s shopping
records, the consumer may infer certain private information about
that user, such as potential shopping preferences, rough dwelling
area, etc.

Many solutions have been proposed to address the above limitations
in data-sharing schemes for group users, but few have considered both
issues. To guarantee the data integrity, previous works employed the
provable data possession (PDP) technology and a trusted third-party
auditor to verify the data integrity for users by pre-generated tags
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Fig. 1. Typical data sharing system with centralized trust.

with the user’s private key [6,7,9,10]. Some studies [11–16] realized
integrity and anonymity simultaneously but they relied on centralized
trust. Hu et al. modified the data structure of shared data to provide
strong anonymity for providers [8]. Nevertheless, it is a huge risk
for the data sharing environments. [5,15,16]. In the aforementioned
example, a data consumer may obtain a fake record that indicates an
inexistent product in the market to generate a mistaken judgement,
while the market cannot identify who violates the rules. Overall, a
data integrity auditing scheme for group users should reach anonymity
and traceability, simultaneously. Moreover, we require that traceability
should not violate the anonymity of honest providers, and we call it
controllable anonymity. Accordingly, a question emerges: how to achieve
controllable anonymity without centralized trust while maintaining data
integrity for data-sharing?

1.1. Proposed scheme

To answer this question, this work proposes OWL, a data sharing
scheme for group users with controllable anonymity and integrity. We
desire OWL to perform as a real owl that opens an eye to the providers
and closes an eye to the honest providers (controllable anonymity),
catches the mouse (the malicious provider), and protects the crops in
the farmland (data integrity). There are three technical challenges that
underpin the design of OWL.

1. Anonymity vs. Integrity. As mentioned earlier, the data in-
tegrity adopts pre-generated tags with the user’s private key. The
provider’s public key is required for verification, which may dis-
close the identity or the relationship between the public key and
the identity [8]. We employ vector commitment (VC) technology
to achieve the data integrity without using the private key. Com-
pared to the homomorphic linear authenticators [6,7,9,10], VC
generates auditing information using public parameters rather
than the private key, resulting in anonymity.

2. Trust vs. Efficiency. To remove the centralized trust, we apply
traceable ring signature (TRS) technology to replace the group
signature (delete the manager) used in [5,12,15]. Nevertheless,
the DSP and consumers require a trustworthy third party to
collect some public parameters to verify the TRS signature and
VC commitment. Some schemes [17–20] employed blockchain
as a trusted auditor to perform auditing. Hence, we utilize
the blockchain as a trust bulletin board to log information of
integrity and controllable anonymity [21]. Unfortunately, the
poor throughput of blockchain [22–24] is a bottleneck for data
updates. To this end, we adopt the state channel (SC) [23] to
offload and aggregate data update operations.

3. Efficiency vs. Conflicts. Although the SC improves the through-
put, the frequent data update of a group of suppliers implies
concurrent conflicts. For example, two data suppliers may up-
date the same data to independent versions. This fork prohibits
456
other providers within the group from proceeding with the fol-
lowing operation. We propose methods to solve this predicament
in Section 6.

In broad terms, the contributions made by this work can be de-
scribed as follows:

• OWL allows a group of data providers to share sensitive data
with controllable anonymity leveraging the traceable data struc-
tures we designed, traceable ring signature and blockchain. It
preserves the anonymity of providers from the outside world, and
it is able to catch the malicious provider inside the group while
maintaining the anonymity of the honest providers.

• We design a data integrity auditing scheme that leverages vector
commitment and blockchain to enable the DSP and data con-
sumers to verify the integrity of data. Furthermore, it leaks no
identity privacy of providers than traditional integrity auditing
schemes by avoiding the usage of private keys.

• OWL utilizes the state channel to increase the blockchain through-
put. To address the conflict issues that arise when a group of
providers shares a single state channel, we propose schemes to (1)
alleviate the contradiction between the high-frequency data up-
date and the inefficiency throughput of blockchain and (2) resolve
the concurrent conflict of multiple providers. We also develop
a strategy for dealing with the online assumption problem and
linear overhead of the state channel.

• We conduct comprehensive security analysis and combine these
with existing building blocks to test the overhead of OWL. The re-
sults demonstrate the effectiveness and efficiency of our proposed
schemes.

1.2. Layout

The rest of this paper is organized as follows. In Section 2, we
introduce the related work. In Section 3, we give the system model,
formal workflow, threat model and design goals. Section 4 gives the se-
curity assumptions. In Section 5, we present the detailed construction.
In Section 6, we present the methods for state channel predicament.
Section 7 gives the security analysis of our scheme. In Section 8, we
carry out experiments to evaluate the overhead in our scheme. The
results show that our scheme is efficient. We list the limitations of OWL
in Section 9. We finally present the conclusion in Section 10.

2. Related works

In this section, we review literature related to the data sharing
schemes, including data integrity and anonymity. Data sharing is an
important step to explore the potential value of data. It enables data
providers to transfer data to data consumers that are with more com-
puting and analytical power via a cloud-based platform. Research
on data security of data sharing includes confidentiality, anonymity,
integrity, accountability, access control, and so on [25–28]. Our work
focuses on the integrity of shard data and the anonymity of a group of
providers.

2.1. Data integrity

Under the assumption of a cloud storage model for resource-limited
data providers (data owners). Ateniese et al. [6] first presented the con-
cept of provable data possession (PDP) and constructed homomorphic
linear verifiable (HLA) tags on the basis of RSA-based signatures as
auxiliary information to check the integrity of data on remote servers.
Based on this, scholars have proposed various schemes to enhance
it, such as dynamic operation [9] and outsourced verification [10].
Shen et al. introduced a sanitizer that sanitizes the data block to hide
sensitive information while keeping the integrity of shared data. By

using this method, the data in the cloud can be shared with others
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preserving the sensitive information [11]. Ambika and Moses use fac-
torial prime-based data control to guarantee the data integrity with
dynamic member management under a group manager [12]. Song et al.
suggested a public data integrity verification approach for cloud data
with asynchronous revocation for group users based on HLA tags and
proxy signatures. The HLA tags protect the integrity, and the revoked
users’ old signatures are updated by a fresh signature using proxy
re-signature [13]. However, these schemes rely on centralized trust.
Work [11] involves a trustful sanitizer, the manager oversees the whole
group in work [12]. The cloud server that generates the new signature
is also a centralized trust in work [13]. With the advent of blockchain
technology, auditing schemes [17–20] resort to it to eliminate the
centralized trust and records integrity information immutably.

OWL also leverages blockchain as bullion broad to record the in-
tegrity proofs of shared data. With this trustful information, consumers
and DSP can verify the data integrity via vector commitment.

2.2. Anonymity

It is deficient to provide content confidentiality through message
encryption alone for data sharing under multi-roles involved. The
sophisticated attackers use various means to steal the user’s identity
information. For example, the attacker may use a public key used in
data integrity to infer the identity of the provider [8]. Some studies
guarantee strong anonymity for providers to publish data [29,30].
Unfortunately, strong anonymity is detrimental to data sharing since
the malicious provider may serve the devil while escaping punish-
ments. Some works have been proposed to limit this uncontrollable
anonymity [31–33]. Yan et al. proposed a rights distribution center
to hide user’s identity when verifying the data integrity though hash
function [14]. However, they brought in a trust role rights distribution
center that records the data activities made by users. Huang et al.
proposed a blockchain-based data sharing scheme for multiple groups
with anonymity and traceability via group signature [15]. The veri-
fication information is saved on the blockchain to help users verify
the data integrity. In work [16], a privacy-preserving scheme with an
identity-trackable character is proposed for the smart grid, where a
trustful anchor is given to trace the abnormal entities. Nevertheless, the
manager of group in work [15] and the anchor in work [16] have ex-
cessive power to expose every member’s identity. The centralized trust
assumption brings potential risk to the actual execution of data sharing.
For example, the manager may shelter the malicious provider. Tan ad-
dressed the security and privacy issues in edge computing environment,
and proposes an IoT group association and update mechanism, which
protects identity privacy and security through an identity verification
mechanism [34]. Xu et al. proposed a privacy-preserving sanitizable
signature scheme to solve the problem that traditional digital signa-
tures cannot meet the diversity and privacy requirements of medical
data applications, which realizes the mutability of messages without
the cooperation of the original signer, and improves the privacy and
flexibility [35].

OWL combines traceable ring signature and blockchain to accom-
plish controllable anonymity that can catch the malicious provider and
preserve the privacy of honest providers in a single group without a
centralized manager.

3. Overview

In this section, we introduce the system model, threats, assumptions
and design goals of OWL.
457
Fig. 2. System model of OWL.

3.1. System model

Fig. 2 shows the system model of OWL, which involves four parties:

• Consumers are willing to get the wanted data file from a rep-
utable and trustworthy data sharing platform.

• Providers prefer to present in the form of a group. They tend to
resort to a platform to share their data. The majority is honest,
while the minority is malicious and seeks to shift blame.

• Data sharing platform (DSP) conscientiously provides data ser-
vices for consumers and providers. Once illegal data is discovered
on the platform, DSP will immediately delete the data and no-
tify the corresponding provider group. Note that the underlying
storage component is a cloud storage model.

• Blockchain consists of nodes from all over the world, maintain-
ing a tamper-proof evidence-perpetuation platform via a consen-
sus algorithm. The blockchain can run smart contracts, which
support state channel. OWL uses it to resolve contradictions
lying to frequent updates and insufficient blockchain throughput
and relieve concurrent conflict among providers.

The formal definition is given as follows:

• Setup(1𝜆,𝓁). Take as input security parameters 𝜆 and 𝓁, all
entities generate their cryptographic parameters for blockchain
keys (𝑝𝑘, 𝑠𝑘), TRS keys (𝑡𝑝𝑘, 𝑡𝑠𝑘) and VC public parameters 𝗉𝗉.

• Creating(𝑠𝑘, 𝑡𝑝𝑘, 𝑡𝑠𝑘, 𝗉𝗉). The providers create state channel 𝑆𝐶
in blockchain, generate TRS signature 𝜎 and VC commitment 𝐶
for the encrypted data 𝑚.

• Uploading(𝑚, 𝜎, 𝐶). The DSP verifies the 𝜎 and 𝐶 of 𝑚 sent by a
provider.

• Sharing(𝑚, 𝜎, 𝐶, 𝛬). The consumer verifies the 𝜎, 𝐶 and 𝛬 of 𝑚
from the DSP.

• Updating(𝑚′, 𝜎′, 𝐶 ′). The provider updates the 𝑚 to 𝑚′ with TRS
signature 𝜎′ and VC commitment 𝐶 ′. The blockchain records 𝜎′

and 𝐶 ′. The DSP verifies the 𝜎′ and 𝐶 ′.
• Tracing(𝜎, 𝑡𝑝𝑘, 𝑡𝑠𝑘). Given the signature 𝜎 of illegal data, the

providers jointly execute the trace algorithm of TRS and find the
malicious provider.

• Correction. The providers expel the malicious provider and re-
covery data 𝑚. The rest of providers create a new state channel
𝑆𝐶 in blockchain, generate TRS signature 𝜎 and VC commit-
ment 𝐶 for the encrypted data 𝑚. After saving the parameters in
blockchain, the provider send them to the DSP, who verifies the
𝜎 and 𝐶 of 𝑚.

3.2. Threat model and assumption

Our design purpose is to disclose dishonest behavior while preserv-
ing the privacy of the honest entities.

Data providers share data in the form of groups. The majority of
data providers are honest, and the minority of data providers in each
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group intentionally or unintentionally upload incorrect or illegal data.
When such an incident occurs, honest providers take actions to find
and expel the malicious provider, and then provide the correct and
legitimate data to the DSP.

Consumers are honest to send requests the DSP for data. They are
equipped with anomaly detection module, which can detect incorrect
or illegal data. Consumers will report the accident to the DSP.

Additionally, DSP delivers data from providers to consumers. We
view it as a typical curious but honest role that provides data-sharing
services but desires to catch users’ identity privacy without being
detected [6,7]. We assume the threats to the integrity of sharing data on
DSP can be both internal and external attacks, e.g., hardware failures,
software vulnerabilities [20,36]. The DSP may deliberately hide the
data loss incidents to protect its reputation [37]. The adversary  with
robabilistic polynomial time ( ) computing ability is interested in
he privacy of data or identities of providers.

Furthermore, we assume a secure append-only blockchain with the
ollowing features [38]:

1. Immutability, no one can tamper with the data on it.
2. Accessibility, everyone can access the blockchain to get the

entire or partial data.
3. Pseudonym, the possibility that adversary  infers the entity’s

real identity through a pseudonym is negligible.
4. Smart contract, a program that runs in the blockchain, and

everyone can publish a transaction to establish a smart contract
or modify the state of contracts. OWL employs a smart contract
to implement state channel that is accessible for everyone and
modifiable for the providers who establish it.

We assume that the existing communication technologies enable
eliable transmission, and some anonymous communication tools [39,
0] are adopted by the entities to protect the identity privacy in the
etwork layer.

.3. Design goals

In accordance with the analysis of the data-sharing system practices,
e prioritize the desirable goals of OWL.

• Sharing data integrity. Integrity guarantees that the data-
sharing platform faithfully stores the data is of utmost critical.
Compared to the conventional data integrity schemes in cloud
storage, we need to ensure that the integrity information is
accessible.

• Controllable anonymity. Most data sharing systems give greater
power to control user privacy, and some schemes emphasize
privacy overly. Hence, it is desirable to propose an on-demand
anonymity mechanism for data-sharing, where the honest can be
protected instead of the malicious provider.

• On-chain efficiency. Inherent cost due to on-chain storage and
computation is inevitable for the goal of controllable anonymity.
Considering the criticized throughput of blockchain obstructs the
efficiency of sharing data updating. We also need an efficient way
of updating data among providers as few as possible to interact
with the blockchain.

. Preliminaries

.1. RSA assumption

Let 𝑘 ∈ N be the security parameter, 𝑁 a random RSA modulus of
ength 𝑘, 𝑧 be a random element in Z𝑁 , and 𝑒 be an (𝓁 + 1)-bit prime
for a parameter 𝓁). Then we say that the RSA assumption holds if for
ny  adversary  the probability

r[𝑦 ← (𝑁, 𝑒, 𝑧) ∶ 𝑦𝑒 = 𝑧 mod 𝑁]

s negligible on the security parameter 𝑘.
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Table 1
Summary of notations.

Notations Meanings

F𝑅 The finite field with prime 𝑝.
𝐺 The base point of elliptic curve with order 𝑜.
𝑝𝑘∕𝑠𝑘 The public/private key pairs of providers for BC.
𝑝𝑘𝑠 The public key set of all providers for BC.
𝑎𝑑𝑑𝑟 The BC address of smart contract.
𝐾 The symmetric encryption (AES-256) key
𝜆, 𝗄,𝓁 The security parameters.
G The multiplicative group.
𝑞 The prime order of G.
𝑔 The generator of G.
𝐻,𝐻 ′ ,𝐻 ′′ The distinct one-way functions.
𝑛 The number of providers in one group.
ℎ The hash value for TRS.
𝑡𝑝𝑘∕𝑡𝑠𝑘 The public/private key pairs of providers for TRS.
𝑡𝑝𝑘𝑠 The public key set of all providers for TRS.
𝜎 The signature generated by provider with 𝑡𝑠𝑘.
𝐿 The tag used in TRS.
𝑖𝑠𝑠𝑢𝑒 The core component of 𝐿, enables the traceability.
𝐴0 , 𝐴1 The elements for TRS.
𝑎𝑖 , 𝑏𝑖 The intermediate parameter for TRS.
𝑤𝑖 , 𝑐𝑖 , 𝑧𝑖 The random number for TRS.
𝑝1 , 𝑝2 The 𝗄/2-bit prime number for VC.
𝑁 The composite number for VC.
𝑒𝑖 The 𝑞(𝓁 + 1)-bit primes for VC.
𝑎 The random number for VC.
𝑆𝑖 The intermediate parameter for VC.
𝗏 The size of data block.
𝗉𝗉 The public parameters for VC.
𝐶 The commitment of data.
𝑎𝑢𝑥 The auxiliary information used for VC.
𝛬 The proof of data integrity for VC.

4.2. Bilinear pairing

Given two cyclic groups of large prime order 𝑞, 𝐺1 and 𝐺𝑇 . Let 𝑔1
and 𝑔2 be the generators of 𝐺1 and 𝐺𝑇 , respectively. A cryptographic
bilinear map is a map 𝑒: 𝐺1 × 𝐺1 → 𝐺𝑇 satisfying the three properties
as follows.

1. Bilinear : for ∀𝑃 ,𝑄 ∈ 𝐺1 and ∀𝑥, 𝑦 ∈ 𝑍∗
𝑞 , 𝑒(𝑃 𝑥, 𝑄𝑦) = 𝑒(𝑃 ,𝑄)𝑥𝑦;

2. Non-degenerate: ∃𝑔1 ∈ 𝐺1, then 𝑒(𝑔1, 𝑔1) ≠ 1;
3. Computable: the map 𝑒 can be computed efficiently.

.3. Decisional Diffie–Hellman assumption (DDH)

Given a quad (𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) ∈ G1, where (𝑥, 𝑦, 𝑧) ← Z∗
𝑞 , and 𝑔 ∈ G1 is

generator. For any  adversary  and a security parameter 𝜆, the
dvantage

𝑑𝑣𝐷𝐷𝐻
 (𝜆) = |Pr[(𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) = 1]|

−|Pr[(𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 1]|.

s negligible on the security parameter 𝜆.

. A data integrity auditing scheme with controllable anonymity

OWL ensures the integrity of sharing data leveraging VC and
lockchain. We also design data structures along with TRS to realize
he controllable anonymity. SC are used to improve the throughput of
lockchain. In this section, we introduce the basic usage of SC in OWL,
nd we focus on the conflicts of providers within one state channel
n Section 6. For the sake of readability, let us give the notations in
able 1.

.1. Building blocks

The details are shown in Appendix, including TRS, VC and SC.
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Fig. 3. Traceable data structures for OWL.

Fig. 4. A data integrity auditing scheme with controllable anonymity.

.2. Traceable data structures for owl

We design traceable data structure (TDS) to assist in data sharing,
as shown in Fig. 3. It contains description and object. The former
is plaintext, briefly introduces the content of object and attracts the
consumer. The latter consists of an object header objh and an object
content objc. The objh contains auxiliary information. The Identity is
the unique identification of this data. The Address is the state channel
address of this data. The RingSig is the traceable ring signature. The

ersion is the version number of this object. The TxID is the transaction
ID of this object version. The first three terms are used to ensure
integrity and controllable anonymity, as described in the next subsection.

he last two terms are used to keep freshness and validity explained in
Section 6.2. The objc is the encrypted content for sharing.

Correspondingly, we use state channels (also a smart contract of
lockchain) to record information so that consumers and the DSP can
erify the obj in case of data corruption. The entries of a state channel

in OWL contains 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑅𝑖𝑛𝑔𝑆𝑖𝑔, 𝑖𝑠𝑠𝑢𝑒, 𝐸𝑙𝑒𝑚𝑒𝑛𝑡, 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 and
𝑃𝐾𝑠. The 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 is the address of smart contract. The 𝑅𝑖𝑛𝑔𝑆𝑖𝑔 is

he traceable ring signature of this obj. The 𝑖𝑠𝑠𝑢𝑒 is the random number
sed in the 𝑅𝑖𝑛𝑔𝑆𝑖𝑔. The 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 records the elements used in the
𝑖𝑛𝑔𝑆𝑖𝑔, i.e. 𝐴0. The 𝑖𝑠𝑠𝑢𝑒 and 𝐴0 are useful to trace the malicious
rovider. The 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 is the commitment used for data integrity.
he 𝑇𝑃𝐾𝑠 records all traceable ring signature public keys of this group
or the obj, they are used to verify the 𝑅𝑖𝑛𝑔𝑆𝑖𝑔.

.3. A concrete scheme

Here, we introduce the data integrity auditing scheme that en-
bles DSP and consumers to verify the data integrity via the VC and
lockchain. The scheme is shown in Fig. 4 and is defined by a collection
f phases as follows:

Setup(1𝜆,𝓁):

1. Let 𝜆, 𝑘,𝓁 be security parameters.
2. We adopt elliptic curves cryptography (ECC) algorithm to gener-

ate blockchain public/private key pair as Bitcoin and Ethereum.
In a finite field F with prime 𝑝, we choose a curve 𝑦2 = 𝑥3 +
𝑅
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𝑎𝑥 + 𝑏, let 𝐺 be a base point of this curve with order 𝑜, 𝑜 > 2160.
Let provider 𝑃𝑖 randomly chooses a number 𝑠𝑘 in [1, 𝑜 − 1] and
calculates 𝑝𝑘 = 𝑠𝑘𝐺. The BC public key of 𝑃𝑖 is 𝑝𝑘 and the private
key is 𝑠𝑘. We let 𝑝𝑘𝑠 = (𝑝𝑘1,… , 𝑝𝑘𝑛) be an ordered public-key
list for 𝑛 providers. We also use the public key 𝑝𝑘 represent the
address 𝑎𝑑𝑑𝑟 in blockchain.

3. Let G be a multiplicative group of prime order 𝗊 and let 𝑔 be
a generator of G. Let 𝐻 ∶ {0, 1}∗ → G, 𝐻 ′ ∶ {0, 1}∗ → G, and
𝐻 ′′ ∶ {0, 1}∗ → Z𝑞 be distinct one-way functions. Provider 𝑃𝑖
picks up random element 𝑡𝑠𝑘𝑖 ∈ Z𝑞 and computes 𝑦𝑖 = 𝑔𝑡𝑠𝑘𝑖 . The
TRS public key of 𝑃𝑖 is 𝑡𝑝𝑘𝑖 = {𝑔, 𝑦𝑖,G} and the corresponding
private key is 𝑡𝑠𝑘𝑖. We let 𝑡𝑝𝑘𝑠 = (𝑡𝑝𝑘1,… , 𝑡𝑝𝑘𝑛) be an ordered
public-key list for 𝑛 providers.

4. The 𝑛 providers randomly choose two 𝗄/2-bit primes 𝑝1 and 𝑝2,
set 𝑁 = 𝑝1𝑝2, and choose 𝑞(𝓁 + 1)-bit primes 𝑒1,… , 𝑒𝑞 that do

not divide 𝜙(𝑁). For 𝑖 = 1,… , 𝑞, there are 𝑆𝑖 = 𝑎
∏𝑞

𝑗=1,𝑗≠𝑖 𝑒𝑗 .
Hence, 𝗉𝗉 = {𝑁, 𝑎, 𝑆1,… , 𝑆𝑞 , 𝑒1,… , 𝑒𝑞}. The message space is
𝑀 = {0, 1}𝓁 .

5. The provider 𝑃𝑖 generates a symmetric encryption (AES-256) key
𝐾 to send to others in this group.

The basic process is shown in Algorithm 1:

Algorithm 1 Setup Phase
Input: 𝗄, 𝗇, 𝓁, 𝗊

utput: {(𝑝𝑘𝑖, 𝑠𝑘𝑖)|𝑖∈𝑛}, {(𝑡𝑝𝑘𝑖, 𝑡𝑠𝑘𝑖)|𝑖∈𝑛}, 𝗉𝗉
roviders:
1: (𝑝𝑘𝑖, 𝑠𝑘𝑖) ← 𝖲𝖢.𝖲𝖾𝗍𝗎𝗉(𝟣𝗄, 𝗇)
2: (𝑡𝑝𝑘𝑖, 𝑡𝑠𝑘𝑖) ← 𝖳𝖱𝖲.𝖪𝖦𝖾𝗇(𝟣𝗄, 𝗇)
3: 𝗉𝗉 ← 𝖵𝖢.𝖪𝖦𝖾𝗇(𝟣𝗄,𝓁, 𝗏)

Creating(𝑠𝑘, 𝑡𝑝𝑘, 𝑡𝑠𝑘, 𝗉𝗉):

1. The providers have created the data 𝑑𝑎𝑡𝑎 and encrypt it with key
𝐾 (i.e., objc) and leveraged OWL for sharing. Then, they need to
generate the objh, including Identity, Address and RingSig.

2. They use a one-way function 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 ← 𝐻 ′′(objc).
3. One provider 𝑃𝑖 generate tag 𝐿 = {𝑖𝑠𝑠𝑢𝑒, 𝑡𝑝𝑘𝑠}, where 𝑖𝑠𝑠𝑢𝑒 is a

random number. 𝑃𝑖 calculates the hash value ℎ = 𝐻(𝐿), compute

signature 𝜎𝑖 = ℎ𝑡𝑠𝑘𝑖 , sets 𝐴0 = 𝐻 ′(𝐿, objc) and 𝐴1 =
(

𝜎𝑖
𝐴0

)
1
𝑖 . For

all 𝑗 ≠ 𝑖, 𝑃𝑖 compute 𝜎𝑗 = 𝐴0𝐴
𝑗
1. We set 𝜎𝑁 = (𝜎1,… , 𝜎𝑛). Then,

𝑃𝑖 randomly chooses 𝑤𝑖 ← Z𝑞 and sets 𝑎𝑖 = 𝑔𝑤𝑖 , 𝑏𝑖 = ℎ𝑤𝑖 . For all
𝑗 ≠ 𝑖, 𝑃𝑖 randomly chooses 𝑧𝑗 , 𝑐𝑗 ← Z𝑞 and sets 𝑎𝑗 = 𝑔𝑧𝑖𝑦

𝑐𝑗
𝑖 , 𝑏𝑗 =

ℎ𝑧𝑗 𝜎
𝑐𝑗
𝑗 . We set 𝑎𝑁 = (𝑎1,… , 𝑎𝑛) and 𝑏𝑁 = (𝑏1,… , 𝑏𝑛). 𝑃𝑖 sets

𝑐 = 𝐻 ′′(𝐿,𝐴0, 𝐴1, 𝑎𝑁 , 𝑏𝑁 ) Then, 𝑃𝑖 computes 𝑐𝑖 = 𝑐 −
∑

𝑗≠𝑖 𝑐𝑗
mod 𝗊 and 𝑧𝑖 = 𝑤𝑖 − 𝑐𝑖𝑡𝑠𝑘𝑖 mod 𝗊. We set 𝑐𝑁 = (𝑐1,… , 𝑐𝑛) and
𝑧𝑁 = (𝑧1,… , 𝑧𝑛). The signature of objc is 𝜎 = (𝐴1, 𝑐𝑁 , 𝑧𝑁 ) on
𝑖𝑠𝑠𝑢𝑒. We set 𝑅𝑖𝑛𝑔𝑆𝑖𝑔 = 𝜎.

4. The provider 𝑃𝑖 compute commitment 𝐶 = 𝑆objc1
1 𝑆objc2

2 …𝑆
objcq
𝑞

and the auxiliary information 𝖺𝗎𝗑 = {objc1,… , objcq}.
5. The provider 𝑃𝑖 constructs a transaction to create the state

channel with parameters (𝑝𝑘𝑠, 𝑡𝑝𝑘𝑠, 𝜎, 𝐶, 𝗉𝗉, 𝑖𝑠𝑠𝑢𝑒, 𝐴0) to get the
address of state channel 𝑎𝑑𝑑𝑟𝑆𝐶 and the transaction ID 𝑡𝑥𝑖𝑑 to
fill objh. We set 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑎𝑑𝑑𝑟𝑆𝐶 and 𝑇𝑥𝐼𝐷 = 𝑡𝑥𝑖𝑑. Then the
𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑥, where 𝑥 is a random number.

The basic process is shown in Algorithm 2:

Uploading(obj, 𝜎, 𝐶):

1. The provider sends the obj to the DSP with 𝜎, 𝐶.
2. The DSP extracts the address of state channel from obj .
h
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Algorithm 2 Creating Phase
Input: obj, 𝗊, 𝗉𝗉, {(𝑝𝑘𝑖, 𝑠𝑘𝑖)|𝑖∈𝑛}, {(𝑡𝑝𝑘𝑖, 𝑡𝑠𝑘𝑖)|𝑖∈𝑛}

utput: 𝐶, 𝑎𝑢𝑥, 𝜎
roviders:
1: 𝑖𝑠𝑠𝑢𝑒 ← 𝑃𝑅𝑁𝐺()
2: 𝐿 ∶= {𝑖𝑠𝑠𝑢𝑒, 𝑡𝑝𝑘𝑠}
3: 𝜎 ← 𝖳𝖱𝖲.𝖲𝗂𝗀𝗇(obj, 𝐿, 𝑠𝑘𝑗 )
4: 𝑎𝑑𝑑𝑟 ← 𝖲𝖢.𝖮𝗉𝖾𝗇(𝑝𝑘𝑠, 𝑡𝑝𝑘𝑠, 𝜎, 𝑖𝑠𝑠𝑢𝑒, 𝗉𝗉)
5: (𝐶, 𝑎𝑢𝑥) ← 𝖵𝖢.𝖢𝗈𝗆(𝗉𝗉, 𝑚1, 𝑚2, ..., 𝑚𝑞)
6: fill objh with contract address 𝑎𝑑𝑑𝑟.

3. The DSP accesses the blockchain to fetch the parameters
(𝑡𝑝𝑘𝑠, 𝜎𝐵𝐶 , 𝐶𝐵𝐶 , 𝗉𝗉, 𝑖𝑠𝑠𝑢𝑒) according to Address. Then, the DSP
compare the 𝜎 of objh and the 𝜎𝐵𝐶 of state channel.

4. If they are equal, the DSP parses the 𝜎 = (𝐴1, 𝑐𝑁 , 𝑧𝑁 ). The DSP
parses 𝐿 = (𝑖𝑠𝑠𝑢𝑒, 𝑡𝑝𝑘𝑠), computes ℎ = 𝐻(𝐿), 𝐴0 = 𝐻 ′(𝐿, objc),
𝜎𝑖 = 𝐴0𝐴𝑖

1, 𝑎𝑖 = 𝑔𝑧𝑖𝑦𝑐𝑖𝑖 and 𝑏𝑖 = ℎ𝑧𝑖𝜎𝑐𝑖𝑖 . Then, the DSP checks
whether 𝐻 ′′(𝐿, objc, 𝐴0, 𝐴1, 𝑎𝑁 , 𝑏𝑁 ) =

∑

𝑛 𝑐𝑖 mod 𝗊.
5. If they are equal, the DSP stores the data and makes the descrip-

tion information public.

The basic process is shown in Algorithm 3:

Algorithm 3 Uploading Phase
Providers:
1: send the obj and its description to dsp.
Dsp:
1: get 𝐿 from contract according to 𝑎𝑑𝑑𝑟.
2: compare the 𝜎 in objh and 𝜎𝐵𝐶 in blockchain.
3: 𝑏 ← 𝖳𝖱𝖲.𝖵𝖾𝗋𝖿 (obj, 𝐿, 𝜎)
4: if 𝑏 = 0 then
5: return false
6: else
7: store the obj and the description.
8: end if

Sharing(𝑚, 𝜎, 𝐶, 𝛬):

1. According to the description, the consumer can find and request
the desired data from the DSP.

2. The DSP generates the integrity proof. For 𝑖 ∈ |𝗊|, the DSP
computes 𝛬𝑖 = 𝑒𝑖

√

∏𝗊
𝑗=1,𝑗≠𝑖 𝑆

𝑚𝑗
𝑗 mod 𝑁 , and sends (obj, 𝐶, 𝛬𝑖) to

the consumer.
3. The consumer accesses the blockchain to fetch the parameters

(𝑡𝑝𝑘𝑠, 𝜎𝐵𝐶 , 𝐶𝐵𝐶 , 𝗉𝗉, 𝑖𝑠𝑠𝑢𝑒) according to Address of objh. Then, the
consumer compares the 𝜎 of objh and the 𝜎𝐵𝐶 of state channel.

4. The consumer verifies the proof. The consumer checks whether
𝑆𝑚𝑖
𝑖 𝛬𝑒𝑖

𝑖 = 𝐶.
5. If they are equal, the consumer parses the 𝜎 = (𝐴1, 𝑐𝑁 , 𝑧𝑁 ).

The consumer parses 𝐿 = (𝑖𝑠𝑠𝑢𝑒, 𝑡𝑝𝑘𝑠), computes ℎ = 𝐻(𝐿),
𝐴0 = 𝐻 ′(𝐿, objc), 𝜎𝑖 = 𝐴0𝐴𝑖

1, 𝑎𝑖 = 𝑔𝑧𝑖𝑦𝑐𝑖𝑖 and 𝑏𝑖 = ℎ𝑧𝑖𝜎𝑐𝑖𝑖 . Then, the
DSP checks whether 𝐻 ′′(𝐿, objc, 𝐴0, 𝐴1, 𝑎𝑁 , 𝑏𝑁 ) =

∑

𝑛 𝑐𝑖 mod 𝗊.
6. If they are equal, the consumer sends the public key 𝑝𝑘𝑐 to

the DSP. The DSP sends it to the providers. Every provider can
encrypt 𝐾 with 𝑝𝑘𝑐 to get {𝐾}𝑒𝑛𝑐𝑝𝑘𝑐

, and sends it the DSP. The DSP
sends {𝐾}𝑒𝑛𝑐𝑝𝑘𝑐

to the consumer. The consumer decrypts it with
private key 𝑠𝑘𝑐 to obtain 𝐾. Finally, the consumer can decrypt
objc to get the plaintext.

The basic process is shown in Algorithm 4:

Updating(obj′ , 𝜎′, 𝐶 ′):
c
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Algorithm 4 Sharing Phase
Consumer:
1: send request for retrieving the target obj.
sp:

1: 𝑝𝑟𝑜𝑜𝑓 ← 𝖵𝖢.𝖮𝗉𝖾𝗇(obj, 𝑖, 𝑎𝑢𝑥)
2: send the obj with 𝑝𝑟𝑜𝑜𝑓 to the consumer.
Consumer:
1: 𝑏1 ← 𝖵𝖢.𝖵𝖾𝗋𝖿 (𝐶, obj, 𝑖, 𝑝𝑟𝑜𝑜𝑓 )
2: 𝑏2 ← 𝖳𝖱𝖲.𝖵𝖾𝗋𝖿 (obj, 𝐿, 𝜎)
3: if (𝑏1 = 0||𝑏2 = 0) then
4: return error
5: end if

1. With updated data obj′c, the provider needs to re-generate new
ring signature, new commitment and update the state channel.
Then, the provider sends new data to the DSP.

2. The provider 𝑃𝑖 generate new 𝑖𝑠𝑠𝑢𝑒′ to build new tag 𝐿′ =
𝑖𝑠𝑠𝑢𝑒′, 𝑡𝑝𝑘𝑠. 𝑃𝑖 calculates the hash value ℎ′ = 𝐻(𝐿′), compute

signature 𝜎′𝑖 = ℎ′𝑡𝑠𝑘𝑖 , sets 𝐴′
0 = 𝐻 ′(𝐿′, obj′c) and 𝐴′

1 =
(

𝜎′𝑖
𝐴′
0

)
1
𝑖
. For

all 𝑗 ≠ 𝑖, 𝑃𝑖 compute 𝜎′𝑗 = 𝐴′
0𝐴

′𝑗
1 . We set 𝜎′𝑁 = (𝜎′1,… , 𝜎′𝑛). Then,

𝑃𝑖 randomly chooses 𝑤′
𝑖 ← Z𝑞 and sets 𝑎′𝑖 = 𝑔𝑤

′
𝑖 , 𝑏′𝑖 = ℎ′𝑤

′
𝑖 . For all

𝑗 ≠ 𝑖, 𝑃𝑖 randomly chooses 𝑧′𝑗 , 𝑐
′
𝑗 ← Z𝑞 and sets 𝑎′𝑗 = 𝑔𝑧

′
𝑖𝑦

′𝑐′𝑗
𝑖 , 𝑏′𝑗 =

ℎ′𝑧
′
𝑗 𝜎

′𝑐′𝑗
𝑗 . We set 𝑎′𝑁 = (𝑎′1,… , 𝑎′𝑛) and 𝑏′𝑁 = (𝑏′1,… , 𝑏′𝑛). 𝑃𝑖 sets

𝑐′ = 𝐻 ′′(𝐿′, 𝐴′
0, 𝐴

′
1, 𝑎

′
𝑁 , 𝑏′𝑁 ) Then, 𝑃𝑖 computes 𝑐′𝑖 = 𝑐′ −

∑

𝑗≠𝑖 𝑐
′
𝑗

mod 𝗊 and 𝑧′𝑖 = 𝑤′
𝑖 − 𝑐′𝑖 𝑡𝑠𝑘

′
𝑖 mod 𝗊. We set 𝑐′𝑁 = (𝑐′1,… , 𝑐′𝑛) and

𝑧′𝑁 = (𝑧′1,… , 𝑧′𝑛). The new signature of obj′c is 𝜎′ = (𝐴′
1, 𝑐

′
𝑁 , 𝑧′𝑁 )

on 𝑖𝑠𝑠𝑢𝑒′. We set 𝑅𝑖𝑛𝑔𝑆𝑖𝑔′ = 𝜎′.
3. The provider 𝑃𝑖 update commitment 𝐶 ′ = 𝐶 ⋅ 𝑆obj′c−objc

𝑖 .
4. The provider 𝑃𝑖 constructs a transaction to update the state chan-

nel with parameters (𝜎′, 𝐶 ′, 𝑖𝑠𝑠𝑢𝑒′, 𝐴′
0) to get a new transaction ID

𝑡𝑥𝑖𝑑′ and update obj′h with 𝜎′, 𝐶 ′, 𝑡𝑥𝑖𝑑′, 𝑥 + 1. Then, 𝑃𝑖 sends the
new data obj′c to the DSP with parameters 𝐶 ′.

5. The DSP verifies the new data and signature as explained in
uploading phase.

he basic process is shown in Algorithm 5:

Algorithm 5 Updating Phase
Providers:
1: 𝑖𝑠𝑠𝑢𝑒′ ← PRNG()
2: 𝐿′ ∶= {𝑖𝑠𝑠𝑢𝑒′, 𝑡𝑝𝑘𝑠}
3: 𝜎′ ← 𝖳𝖱𝖲.𝖲𝗂𝗀𝗇(obj′, 𝐿′, 𝑠𝑘𝑗 )
4: 𝐶 ′ ← 𝖵𝖢.𝖴𝗉𝖽𝖺𝗍𝖾(𝐶,𝑚,𝑚′)
5: 𝖲𝖢.𝖴𝗉𝖽𝖺𝗍𝖾(𝜎′, 𝑖𝑠𝑠𝑢𝑒′, 𝐶 ′)
6: send obj′ to dsp.
Dsp:
1: get 𝐿′ from contract according to 𝑎𝑑𝑑𝑟.
2: compare the 𝜎′ in objh and 𝜎′

𝑏 in blockchain.
3: 𝑏 ← 𝖳𝖱𝖲.𝖵𝖾𝗋𝖿 (obj′, 𝐿′, 𝜎′)
4: if 𝑏 = 0 then
5: return false
6: else
7: store the 𝒅𝒂𝒕𝒂 and the description.
8: end if

Here, we focus on the primary updating process, ignoring the up-
dating conflict, which is explained in Section 6.2.

Tracing(𝜎, 𝑡𝑝𝑘, 𝑡𝑠𝑘):
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1. The consumer deployed an analysis module and an anomaly
detection module can catch the illegal data and inform the DSP
with Identity of obj.

2. The DSP should stop the accessibility of illegal data and sends
the objh to the providers.

3. The providers access the blockchain to obtain the parameters
(𝑡𝑝𝑘𝑠, 𝜎, 𝑖𝑠𝑠𝑢𝑒, 𝐴0). Compare the 𝑖𝑠𝑠𝑢𝑒 in the blockchain and it in
the objh.

4. If they are equal, they extract the 𝐴1 from 𝜎 = (𝐴1, 𝑐𝑁 , 𝑧𝑁 ) and
compute the 𝜎𝑖 = 𝐴0𝐴𝑖

1 for all 𝑖 ∈ [1, 𝑛]. Then, they generate a
random data 𝑚𝑡, set ℎ = 𝐻(𝐿) and compute 𝜎′𝑖 = ℎ𝑡𝑠𝑘𝑖 . For all
𝑖 ∈ [1, 𝑛], if 𝜎𝑖 = 𝜎′𝑖 , the 𝑖 is the order number of the malicious
provider.

Algorithm 6 Tracing Phase
Input: obj
Output: 𝑡𝑝𝑘𝑚𝑎𝑙
onsumer:
1: alert dsp that obj is illegal or incorrect.
Dsp:
1: check the obj.
2: delete the description and objc.
3: inform the providers with objh.
Providers:
1: extract 𝑖𝑠𝑠𝑢𝑒 from objh.
2: 𝐿 ∶= {𝑖𝑠𝑠𝑢𝑒, 𝑡𝑝𝑘𝑠}
3: for 𝑖 ∈ {Providers} do
4: 𝜎𝑖 ← 𝖳𝖱𝖲.𝖲𝗂𝗀𝗇(𝑠𝑡𝑟, 𝐿, 𝑡𝑠𝑘𝑖)
5: 𝜎′.𝑎𝑑𝑑(𝜎𝑖)
6: end for
7: 𝑡𝑝𝑘𝑚𝑎𝑙 ← 𝖳𝖱𝖲.𝖳𝗋𝖺𝖼𝖾(𝐿, 𝜎, 𝜎′)

Correction:

1. The providers expel the malicious provider, correct the data,
rebuild the ring. Suppose that initially 𝑛 providers were in the
group and now there are only 𝑛 − 1 providers. Provider 𝑃𝑖 picks
up random element 𝑡𝑠𝑘𝑖 ∈ Z𝑞 and computes 𝑦𝑖 = 𝑔𝑡𝑠𝑘𝑖 . The
TRS public key of 𝑃𝑖 is 𝑡𝑝𝑘𝑖 = {𝑔, 𝑦𝑖,G} and the corresponding
private key is 𝑡𝑠𝑘𝑖. We let 𝑡𝑝𝑘𝑠 = (𝑡𝑝𝑘1,… , 𝑡𝑝𝑘𝑛−1) be an ordered
public-key list for 𝑛 − 1 providers.

2. The rest of providers create a new state channel 𝑆𝐶 in
blockchain, generate TRS signature 𝜎 and VC commitment 𝐶
for the encrypted data 𝑚, following the process explained in
creating.

3. After saving the parameters in blockchain, the provider send
them to the DSP, who verifies the 𝜎 and 𝐶 of 𝑚, following the
process explained in uploading.

6. Methods for state channel predicament

OWL uses state channel to reduce the interaction with blockchain
for on-chain efficiency. However, there are some inherent drawbacks
to using state channels that get in the way, such as update time,
concurrent conflict, linear overhead and online assumption. We pro-
pose methods to solve them. They consist of: (1) an event-driven
state channel update mechanism, (2) a concurrent conflict resolution
strategy of multi-users’ state channel and (3) a state channel scheme to
relax the assumption.

6.1. An event-driven state channel update mechanism

To achieve consistency in an untrusted environment, the consensus
mechanism causes the low throughput of the blockchain, which con-

tradicts the high-frequency update of data in OWL. There is a mass
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Fig. 5. The event-driven update mechanism of OWL. All members maintain an update
pool, which is affected by the number and time of modified data blocks. Through lucky
election, a temporary leader is selected to determine the updated data block when there
is a write–write conflict. The leader updates the data on-chain once the threshold is
reached.

of research [22–24,41–45] to improve the scalability of blockchain.
Considering practicality, security, and efficiency, we adopt the state
channel as a buffer to relieve this contradiction. All providers in one
group make the state channel up. They update the data status in the
channel with high-frequency off-chain and change the channel status
with low-frequency on-chain according to the method described below.

A direct solution is to upload the data consistency label to the
blockchain periodically, and change the upload frequency by adjusting
the length of the epoch. Unfortunately, the fixed duration method
can hardly meet the demand of dynamic data update. To adapt to the
update demand and interact with the blockchain as little as possible,
we define the data update validity (𝐷𝑈𝑉 ), affected by the proportion
of updated content (𝑃𝑟𝑜) and priority (𝑃𝑟𝑖) to trigger the on-chain
operation.

𝐷𝑈𝑉 =
∑𝑛

1
(

𝑎𝑙𝑖 ∗ 𝑃𝑟𝑜𝑖 ∗ 𝑃𝑟𝑖𝑖
)

∑𝑛
1
(

𝑃𝑟𝑜𝑖 ∗ 𝑃𝑟𝑖𝑖
) ∗ 100%

where 𝑖 denotes the order number of data block, 𝑎𝑙𝑖 denotes whether
the 𝑖th data block is altered, if altered, 𝑎𝑙𝑖 = 1 otherwise, 𝑎𝑙𝑖 = 0. If the
𝐷𝑈𝑉 is greater than a threshold 𝑇 = 𝛼 ∗ 𝐿𝑜𝑇 , then the channel can
be updated on-chain, where 𝐿𝑜𝑇 denotes the length of time since last
update on-chain and the 𝛼 is the impact factor. The process is shown
in Fig. 5.

6.2. Concurrent conflict resolution strategy of multi-users’ state channel

Although we employ state channels to update the data, the con-
current conflict problem within a group remains unresolved in OWL.
The read operation does not change the data and hence does not cause
conflicts. Therefore, we focus on read–write and write–write conflicts.

Read–Write. At first, we point out the reason for this conflict. In
updating phase, updating the information in the blockchain and the
updating operation to DSP have different time costs. Generally, the
blockchain has the old objh when DSP obtains the newer one, causing
the conflict to verify the data. We use the Version and TxID to solve
it. The Version distinguishes between new obj and old obj, we call it
freshness. The TxID enables entities to access blockchain to obtain the
validity. For example, obj𝑖 with 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑖 is outdated than the obj𝑖+1
with 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑖 + 1, but the TxID is used to prove that the obj𝑖 is
just outdated but legal, we call it validity. On the one hand, providers
update data according to the freshness. On the other hand, consumers
are able to verifies the data based on validity. For example, the open-
source desktop operating system Ubuntu has many types of version.3
At the time of writing, the 22.04 LTS is the latest version, but we can
still adopt the old version such as 20.04 TLS and 18.04 TLS.

3 Ubuntu Desktop.

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
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Table 2
Comparison of schemes.

OWL [5] [8] [11] [12] [13] [14] [15] [16] [27] [28]

Data confidentiality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Anonymity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×
Traceability ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ × ×
Integrity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Decentralized trust ✓ × ✓ × × × × × × ✓ ✓
Fig. 6. A brief sketch of Randomness-based Lucky Election. 1⃝, providers generate
competitive random number 𝐶𝑅. 2⃝, providers calculate hash value 𝐻𝑉 with 𝐶𝑅s.
3 , providers calculate the distance between 𝐻𝑉 and 𝐶𝑅. 4⃝, the one who has the

smallest distance wins the game. In fact, to identify each other, these steps also need
to be accompanied by their respective signatures.

Write–Write. We also relieve conflicts within the state channel. Al-
though version number has a prominent effect when different,
providers often start with the same version number. A naïve scheme
is to use a lock to restrain the operation of providers. It is inefficient,
especially since linearizability is feasible when operations on unrelated
data blocks. If these concurrent operations could not be linearized,
what should we do with the group without leaders?

The existing consensus algorithm is blooming, but they target a
wide range of users. However, the number of providers is limited in
OWL. Consequently, we propose a randomness-based election protocol
named lucky election, as shown in Fig. 6. It uses random to compete
for a winner who decides the final version of the content in a con-
flict. To retain the fairness of selection, we compete by comparing
the digital distance. The winner owns the minimum digital distance.
In detail, after each provider updates the content, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖 needs to
generate a competitive random number 𝐶𝑅 and sign it, i.e., 𝑠𝑖𝑔𝑛𝑒𝑙𝑒𝑖 =
𝑆𝑖𝑔𝑛(𝑜𝑏𝑗𝑒𝑐𝑡𝑖, 𝐶𝑅𝑖, 𝑠𝑘𝑖). When it occurs to conflict, the relative providers
should share the 𝑜𝑏𝑗𝑒𝑐𝑡𝑖, 𝑠𝑖𝑔𝑛𝑒𝑙𝑒𝑖 and 𝐶𝑅𝑖 and calculate the hash value.
Suppose there 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟1, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟3 and 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟4 in this conflict, so the
value 𝐻𝑉 = ℎ𝑎𝑠ℎ(𝐶𝑅1, 𝐶𝑅3, 𝐶𝑅4). Then, everyone is able to calculate
the distance 𝑑𝑖𝑠𝑖 = |𝐻𝑉 − 𝐶𝑅𝑖|. The minimal 𝑑𝑖𝑠𝑖 implies the 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖
wins the game. Of course, discard the signature 𝑠𝑖𝑔𝑛𝑒𝑙𝑒𝑖 and random
number 𝐶𝑅𝑖 when there is no conflict.

6.3. Linear overhead and online assumption of state channel

In traditional state channel designs, updating one channel state
needs the assent of all members inside this channel (i.e., the signature
to validate the state) [23,43]. The overhead for communication and
calculation grows linearly with the number of channel participants. The
primary difference is that their updates are only available off-chain. We
need to synchronize the intermediate states on-chain as the auxiliary
information for data integrity auditing. Worse, the state channel further
potentially requires all users to remain online when updating, which
is impractical. In the age of global collaboration, a group of a dozen
people from various time zones is a usual expectation. It is common that
some providers are working (updating the data) while others are resting
(sleeping or on their vacation), so it is hard to reach an agreement

timely among all members under global collaboration. 𝐾
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We modify the constraints for state channel updates to reduce
update overhead and the mandatory negative impact of online assump-
tions. First, we refer to reference. [45] to distinguish channel state
changes by introducing a state field, laying the foundation for subse-
quent state transformations. Second, we loose the constraints of the
state update. We use TRS signature 𝜎 to replace everyone’s signatures
so that each provider could update the channel. Finally, to prevent
the malicious provider from shutting the channel, we demand that all
providers participate in the establishment and closure of state channels.

7. Security analysis

In this section, we analyze the following security features of our
scheme, namely: correctness, data confidentiality, anonymity and con-
trollable anonymity. Table 2 gives the comparison with existing works.

Theorem 1 (Correctness). In OWL, correctness indicates that the data
consumer and the DSP can obtain the result 1 when they execute 𝖵𝖢.𝖵𝖾𝗋𝗂
in data integrity verification, if the RSA assumption holds.

Proof. In setup phase, 𝑛 providers randomly choose two k/2-bit primes
𝑝1 and 𝑝2, set 𝑁 = 𝑝1𝑝2, and choose 𝑞(𝓁 + 1)-bit primes 𝑒1,… , 𝑒𝑞 that

do not divide 𝜙(𝑁). For 𝑖 = 1,… , 𝑞, there are 𝑆𝑖 = 𝑎
∏𝑞

𝑗=1,𝑗≠𝑖 𝑒𝑗 . Hence,
𝗉𝗉 = {𝑁, 𝑎, 𝑆1,… , 𝑆𝑞 , 𝑒1,… , 𝑒𝑞}.

In creating phase, one provider compute commitment
𝐶 = 𝑆𝑚1

1 𝑆𝑚2
2 …𝑆

𝑚𝑞
𝑞 and the auxiliary information 𝖺𝗎𝗑 = {𝑚1,… , 𝑚𝑞}.

Then, {𝐶, 𝖺𝗎𝗑} are sent to the DSP.
In sharing phase, the DSP computes proof

𝛬𝑖 = 𝑒𝑖

√

√

√

√

𝑞
∏

𝑗=1,𝑗≠𝑖
𝑆
𝑚𝑗
𝑗 mod 𝑁.

And the consumer needs to verify the proof If 𝐶 = 𝑆𝑚𝑖
𝑖 𝛬𝑒𝑖

𝑖 mod 𝑁 ,
then the 𝖵𝖢.𝖵𝖾𝗋𝗂() output 1. The detail is proved in Eq. (1)

𝑆𝑚𝑖
𝑖 𝛬𝑒𝑖

𝑖 = 𝑆𝑚𝑖
𝑖

⎛

⎜

⎜

⎝

𝑒𝑖

√

√

√

√

𝑞
∏

𝑗=1,𝑗≠𝑖
𝑆
𝑚𝑗
𝑗

⎞

⎟

⎟

⎠

𝑒𝑖

mod 𝑁

= 𝑆𝑚𝑖
𝑖

( 𝑞
∏

𝑗=1,𝑗≠𝑖
𝑆
𝑚𝑗
𝑗

)

mod 𝑁

= 𝑆𝑚1
1 𝑆𝑚2

2 …𝑆
𝑚𝑞
𝑞 mod 𝑁

= 𝐶.

(1)

Theorem 2 (Data Confidentiality). OWL guarantees data confidentiality
from the DSP.

Proof. In setup phase, providers generate the symmetric encryption
algorithm (AES-256) key 𝐾. In creating phase, the provider encrypts
the data with 𝐾. By using this method, the shared objc is ciphertext.
The work [46] had proved that the AES is a resistant cryptographical
primitive to quantum attacks, such as quantum square attacks and
quantum DS-MITM attacks. In our work, the adversary  with 
has weaker computing capacity than quantum attackers. As a result,
the  adversary  cannot obtain the plaintext of objc without the

.
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On the other hand, our scheme uses blockchain to record parameters
𝑡𝑝𝑘𝑠, 𝜎𝐵𝐶 , 𝐶𝐵𝐶 , 𝗉𝗉, 𝑖𝑠𝑠𝑢𝑒, 𝐴0). The 𝑡𝑝𝑘𝑠 and 𝗉𝗉 are public parameters
hat are not related to the data. Therefore, they do not reveal the
ata. The commitment is generated by 𝐶 = 𝑆𝑚1

1 𝑆𝑚2
2 …𝑆

𝑚𝑞
𝑞 . If the 

adversary  can reverse the data by 𝐶, we can conclude the adversary
breaks the RSA assumption, which contradicts the threat assumption.
The 𝑖𝑠𝑠𝑢𝑒 is generated by the cryptographically secure pseudorandom
number generator that satisfies features. The random number 𝑖𝑠𝑠𝑢𝑒
should be indistinguishable from ‘true random’ numbers according to
specified statistical tests. The  adversary  cannot calculate and
uess it from any given sub-sequence or value. The 𝐴0 is calculated by
he hash function 𝐴0 = 𝐻 ′(𝐿, objc), where 𝐿 = 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑝𝑘𝑠 do not leak

privacy. The objc is the ciphertext of data. Based on the hash function
feature, one-way, once a hash value has been generated, the 
adversary  cannot convert it back into the original data. Therefore,
the  adversary  cannot use the 𝐴0 to guess the secret key or
something else important.

Hence, the data confidentiality holds.

Theorem 3 (Anonymity). For the purpose of protecting the privacy of
providers, OWL is able to restrict the following behaviors of the consumer
and the DSP: (1) learn the identity from the data integrity information. (2)
learn the identity from the signature.

Proof. The consumer and the DSP cannot learn the identity of
providers in the uploading, sharing updating and tracing phases.

1. The consumer cannot get the providers’ identities. If the con-
sumer abides by the protocol, he/she can fetch the desired data
obj from DSP along with integrity proof 𝛬 generated by the
DSP and the signature 𝜎 signed by one of the providers. The
verification of integrity as described in Appendix takes the data
obj, the commitment 𝐶, and the proof 𝛬 as the parameters,
none of them contains the identity information of providers.
Hence, the consumer cannot learn the identity from the data
integrity information. On the other hand, the signature 𝜎 is
generated by one of the providers using the traceable ring sig-
nature which guarantees anonymity proved by the work [32]
under the decisional Diffie–Hellman assumption in the random
oracle model. In other words, the adversary is with probabilistic
polynomial time ( ) computing ability cannot destroy the
anonymity. Therefore, OWL ensure the anonymity of providers
from consumers.

2. The DSP cannot obtain the providers’ identities. As the above
demonstration, the DSP cannot destroy the anonymity from the
signature 𝜎. Besides, as the assumption defined in Section 3.2,
some anonymous communication tools, such as Tor are used to
protect the identity of providers in the network layer. Addition-
ally, the DSP needs to generate commitment 𝐶 for consumers
to prove the integrity of data. The commitment of integrity
as described in Appendix takes the data obj and the public
parameters 𝗉𝗉 as the parameters, none of them contains the
identity information of providers. Hence, the DSP cannot learn
the identity from the commitment process.

Overall, OWL guarantees the anonymity of providers from consumers
and the DSP.

Theorem 4 (Controllable Anonymity). OWL has controllable anonymity
for the malicious provider while keeping the anonymity of honest providers
even the illegal data are lost.

Proof. OWL relies on the tag-linkablity of TRS as proved by the
work [32] to trace the malicious provider. The immutability of
blockchain are utilized in our work to record the tag to realize the
linkablity when the target data are lost. We will first prove how
TRS achieves tag-linkablity at high level, and then prove how we use
blockchain to achieve controllable anonymity while protecting the

honest providers. o
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Fig. 7. Controllable anonymity for providers.

Tag-linkablity. The TRS signature 𝜎 is generated by the 𝖳𝖱𝖲.𝖲𝗂𝗀𝗇()
with parameters message 𝑚, tag 𝐿 = {𝑖𝑠𝑠𝑢𝑒, 𝑡𝑝𝑘𝑠} and the signer’s
private key 𝑡𝑠𝑘𝑖. The detail are given in the work [32]. We give a high
level description. The signature is a triple tuple 𝜎 = {𝐴1, 𝑐𝑁 , 𝑧𝑁}, the
element 𝐴1 is a computation result with parameter 𝑖𝑠𝑠𝑢𝑒 and the private
key 𝑡𝑠𝑘𝑖, and the other two elements 𝑐𝑁 and 𝑧𝑁 are computation results
with parameters obj, 𝐿 and 𝑡𝑠𝑘𝑖. We reduce them with a algorithm 𝑅
to represent the computation program, 𝐴1 = 𝖱𝖠𝟣

(𝐴0, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑖), 𝑐𝑁 =
𝖼𝖭
(𝑚, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑖) and 𝑧𝑁 = 𝖱𝗓𝖭 (𝑚, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑖). When the provider finds

he illegal data 𝑚 with signature 𝜎, the 𝑛 providers will execute the
racing program along with 𝑚 and 𝐿 to trace the real signer. Hence,
e can obtain the signatures 𝜎′1,… , 𝜎′𝑛. By comparing 𝜎 and all new

ignatures, we can catch the signer 𝑠 if

= (𝐴1, 𝑐𝑁 , 𝑧𝑁 )

= (𝖱𝖠𝟣
(𝐴0, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑠),𝖱𝖼𝖭 (obj, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑠),𝖱𝗓𝖭 (obj, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑠))

= (𝖱𝖠𝟣
(𝐴0, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑗 ),𝖱𝖼𝖭 (obj, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑗 ),𝖱𝗓𝖭 (obj, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑗 ))

= (𝐴′
1, 𝑐

′
𝑁 , 𝑧′𝑁 )

= 𝜎′𝑗 .

f the obj is missing, TRS is also able to catch the malicious signer 𝑠 by
omparing the element 𝐴1, as follows:

1 = 𝖱𝖠𝟣
(𝐴0, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑠)

= 𝖱𝖠𝟣
(𝐴0, 𝑖𝑠𝑠𝑢𝑒, 𝑡𝑠𝑘𝑗 )

= 𝐴′
1 𝑖𝑛 𝜎′𝑗 .

In nature, TRS uses the 𝑖𝑠𝑠𝑢𝑒 and 𝐴0 to catch the signer, which
equires the same 𝑖𝑠𝑠𝑢𝑒 and 𝐴0 used to execute tracing procedure.
o make sure the availability of 𝑖𝑠𝑠𝑢𝑒 and 𝐴0, OWL stores it in
he blockchain state channel, as explained in Section 5.2. Besides,
roviders is supposed to generate a new 𝑖𝑠𝑠𝑢𝑒 when they upload or
pdate the data (required in uploading and updating phases) to avoid
hat the same 𝑖𝑠𝑠𝑢𝑒 and 𝐴0 links the signer by the outsiders of this
roup. The brief flow is shown in Fig. 7.

In summary, OWL realizes controllable anonymity.

. Evaluation

In this section, we focus on the extra overhead for controllable
nonymity and integrity. To understand the improvements and trade-
ffs of OWL’s design in decentralized trust, especially, our evaluation
nswers these questions:

Section 8.1: How does the effect of cryptographic tools, such as
raceable ring signature and vector commitment?

Section 8.2.1: How does the effect of event-driven update compare to
poch-based update?

Section 8.2.2: How does blockchain smart contracts affect perfor-
ance?

Our evaluation was conducted on a laptop with an Ubuntu 20.04
perating system, an Intel Core i7-10510U processor and 8 GB of
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Fig. 8. The TRS computational time of two algorithms, 𝖲𝖾𝗍𝗎𝗉() and 𝖪𝖦𝖾𝗇().

Table 3
Comparison of storage overhead with data block size = 4 kB (Unit = kB).

OWL BLS-based [10]a RSA-based [10]a [9]a

Space 0.616 243 223 280

aTolerance rate is 99% and the total file size is 1 GB.

memory. We implemented traceable ring signature and vector commit-
ment with the Python3.8 and encryption algorithm library PyCryptome.
OWL uses blockchain to store auxiliary information for controllable
anonymity and integrity. In our implementation, we used Hyperledger
Fabric v2.3.2 as blockchain to run state channel smart contract coded
via IBM blockchain platform. We also evaluated the performance with
Hyperledger Caliper v0.4.2. We implemented a proof of concept of
scheme event-driven state channel update mechanism proposed in
Section 6.1.

8.1. Microbenchmarks

8.1.1. Traceable ring signature
The TRS enables OWL to trace the malicious provider. Here, we

focus on its computational overhead to evaluate the availability. TRS
consists of five algorithms, 𝖲𝖾𝗍𝗎𝗉(), 𝖪𝖦𝖾𝗇(), 𝖲𝗂𝗀𝗇(), 𝖵𝖾𝗋𝖿 () and 𝖳𝗋𝖺𝖼𝖾(). We
first tested the variable Sophie Germain prime numbers that is used to
generate its group to map the operation into cryptographic computation
in 𝖲𝖾𝗍𝗎𝗉(). As shown in Fig. 8(a), the larger the number, the longer it
takes, and the higher the security. Next, we tested effect of the variable
group member numbers, which leads to the linear public/private key
pairs (𝑡𝑝𝑘, 𝑡𝑠𝑘). In the case of 32 members, it only costs about 60.37 ms,
iven in Fig. 8(b).

Consider the impact of data size and number of members, we tested
he rest algorithms, respectively. Especially, we divided 𝖳𝗋𝖺𝖼𝖾() into
𝗋𝖺𝖼𝖾𝟣() and 𝖳𝗋𝖺𝖼𝖾𝟤(). The former uses the message used in 𝖲𝗂𝗀𝗇(), while

the latter uses arbitrary message to execute it. As shown in Fig. 9,
all overhead increases as the data size and the number of members
increase. Notably, the 𝖳𝗋𝖺𝖼𝖾𝟤() costs almost half as much as 𝖳𝗋𝖺𝖼𝖾𝟣(),
consequently the tracing costs are independent of the original data. In
other words, without the original data, not only can it be traced back,
but it is also faster.

8.1.2. Vector commitment
We focus on the overhead of vector commitment of each phase in

OWL, adopting scheme in [47] to evaluate it. We worked on the size of
modulus 𝑁 is 1024 bits, and all results are the averages of 1000 trials.
Refer to the experiments in work [48], Fig. 10 shows the computational
time in phases, 𝑉 𝑒𝑟𝑖𝑓𝑦, 𝑈𝑝𝑑𝑎𝑡𝑒 and 𝑈𝑝𝑑𝑎𝑡𝑒𝑃 𝑟𝑜𝑜𝑓 for 220 bits file under
various data block size, 512 Bytes, 1 kB, 2 kB and 4 kB. We concluded
that the overhead of providers (phases 𝐾𝑒𝑦𝐺𝑒𝑛, 𝐶𝑜𝑚𝑚𝑖𝑡) is huge, while
the overhead of consumers (phase 𝑉 𝑒𝑟𝑖𝑓𝑦) is quite small. We listed

them in Table 3.
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8.2. Macrobenchmarks

8.2.1. Event-driven update mechanism
Considering the urgency of update and the throughput of

blockchain, we defined the following two metrics: (1) DUV, which
measures the value of each on-chain operation. (2) Rounds, which
represent the number of on-chain operation within a certain period.

Here, we used eight datasets to compare the difference between
event-driven mechanism and epoch-based mechanism. We suppose
there is one group of providers, the data consists of 10,000 blocks,
and each block has its priority (1 to 4). Every dataset consists of
massive records, which denote the modified time and corresponding
block numbers.

The eight datasets are composed of four open datasets and four
datasets that we generated according to certain rules. For the first
four datasets, we used the original time as the modification time and
generate some modified data blocks (1 to 10) for each term. For the
last four datasets, we set the time to go through one month (30 ∗ 24 ∗
3600 s), and aggregated 100,000 modification operations into records
according to variable distributions, and each modification involves 1 to
10 data blocks. The following is the description of the datasets.

(a) Check-Ins. This dataset contains check-ins in NYC and Tokyo
collected for about 10 months (from 12 April 2012 to 16 Febru-
ary 2013). It contains 227,428 check-ins in New York city and
573,703 check-ins in Tokyo [49].

(b) FDC. This dataset contains 4,187,024 records in ‘‘San Francisco
Fire Department Calls’’ and ‘‘San Francisco Elevation Data’’ for
about 17 years (from 12 April 2000 to 29 October 2016) [50].

(c) UCI. This dataset contains 1,067,372 transactions occurring for
a UK-based and registered, non-store online retail from 1 De-
cember 2009 to 9 December 2011 [51]. The minimum unit of
time for this dataset is minutes and the rest seven datasets are
seconds.

(d) MA.4 This data set contains 110,528 medical appointments from
10 November 2015 to 8 June 2016.

(e) DP (Poisson). A dataset satisfying Poisson distribution, consists
of 6454 records.

(f) DN (normal). A dataset satisfying Normal distribution, consists
of 98,091 records, 𝜆 = 3.6𝐾 ∗ 24 ∗ 15, and 𝜎2 = 500𝐾

(g) DU (uniform). A dataset satisfying Uniform distribution, consists
of 97,240 records.

(h) DZ (zipf). A dataset satisfying Zipf distribution, consists of 6013
records, 𝛼 = 1.5.

We also set variable parameters for event-driven mechanism (Eved)
and epoch-based mechanism (Epob), respectively. For event-driven
mechanism, we set 4 thresholds denotes low, medium, high and ex-
treme. For epoch-based mechanism, we set 4 time epochs: (a) 1 h, (b)
6 h, (c) 12 h and (d) 24 h. Of course, if no update occurs within the
time interval, there will be no on-chain operation. For comparison, we
also set the baseline scheme Base, that is, any updates will trigger the
on-chain operation. Results are shown in Fig. 10.

We used black squares to represent rounds and red circles to rep-
resent average 𝑑𝑢𝑣. In terms of the overall trend, Eved has more
𝑟𝑜𝑢𝑛𝑑𝑠 and less 𝑎𝑣𝑟_𝑑𝑢𝑣, and Epob acts contrariwise. Base has the
most rounds and the least 𝑎𝑣𝑟_𝑑𝑢𝑣. Back to the rounds, whether it
is Eved or Epob, these schemes effectively reduce the number of
on-chain operation. Even Eved-low with the most rounds, is still
far less than Base. More rounds means more on-chain operations,
which means more throughput pressure for blockchain. However, from
the perspective of efficiency and profit, we cannot directly determine
which one is perfect. Recall that the first four open datasets covers
tourism, public security, payment and medical industry. Each industry
has variable efficiency needs, according to their various impact on

4 Medical Appointment No Shows.

https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
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https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
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https://www.kaggle.com/joniarroba/noshowappointments
https://www.kaggle.com/joniarroba/noshowappointments
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Fig. 9. The TRS computational time of four algorithms, 𝖲𝗂𝗀𝗇(), 𝖵𝖾𝗋𝖿 (), 𝖳𝗋𝖺𝖼𝖾𝟣() with same message, 𝖳𝗋𝖺𝖼𝖾𝟤() with arbitrary message (1 byte in our evaluation), under variable size
f data when the group members are 4, 8, 16 and 32 (Sophie Germain prime number 𝑞 = 443).
Table 4
Performance metrics for ReadState and UpdateState.

Name Succ Fail Send rate (TPS) Max latency (s) Min latency (s) Avg latency (s) Throughput (TPS)

ReadState 9960 0 353.8 0.19 0.00 0.02 353.7
UpdateState 13 161 1039 156.2 2.07 0.03 0.66 156.1
m
d
g
t
T
i
w
f

Fig. 10. The computational time of VC under variable size of data block.

society. Based on the distribution of polylines, we can put Figs. 11(a)
and 11(c) as a group and put Figs. 11(b) and 11(d) as the other group.
The first group is closer to the field of people’s livelihood, and we argue
that they have lower requirements for efficiency and are more suitable
for Epob, which has a higher 𝑑𝑢𝑣 for each transaction. The second
group is more relevant to the field of life security, and we all agree
that they have higher requirements for efficiency. Although the data
value is measured by 𝑑𝑢𝑣, the potential value is much higher than the
value we set. Hence, these fields prefer Eved.

8.2.2. Blockchain
The Hyperledger Fabric network contains one order-node and two

peer-node in two organization, respectively, and delay = 0.01,
retry = 100. We developed smart contract with functions CreateS-
tate, ReadState and UpdateState, the latter two functions are
the goals to be tested. The benchmark in Caliper consists of 10 workers
for one round with transaction duration 30 s.

The throughput and latency is shown in Table 4. The ReadState
does not involve write operations, so the throughput is higher, reaching
about 353 TPS with 100% success rate. The UpdateState, however,
modifies the state of the data, triggers consensus behavior, reducing
the TPS to 156. It is worth noting that there 1039 transactions of
UpdateState fails to execute due to key collisions in the high read–
write concurrency. In detail, when you submit a transaction, the peer
in Fabric generates a read–write set. This read–write set is then used
when the transaction is committed to the ledger. It contains the identity
465
and version (key) of the variables to be read/written. If, during the
time between set creation and committing, a different transaction 𝑇𝑋2
was committed and changed the version of the variable, the original
transaction 𝑇𝑋1 will be rejected during committal because the version
when read is not the current version. This experiment reflects the fact
that multiple changes to the same data in a short time (less than the
consensus time) will cause the above conflict. Fortunately, OWL adopts
state channel as a buffer to gather these transactions (with same key)
into one transaction off-chain, explained in Section 6.2, avoiding the
key collisions effectively.

9. Discussion

This section discusses the limitations of OWL. It is inefficient on the
dynamic side and not good at the denial of service (DoS) attacks. We
also give possible future work directions.

9.1. Dynamics

OWL utilizes the traceable ring signature to achieve controllable
anonymity and adopts the state channel to alleviate conflicts among
providers. However, these technologies suffer from poor dynamics. The
TRS we used does not support member joining and revocation. As
a result, whenever a member joins or leaves, the other members in
this group must perform the setup procedure together and resign the
shared data. To fix that, we are researching a TRS variation that enables
dynamic members. On the other hand, the state channel is also hard to
update the member. Although we use the ring signature to loosen the
restriction of updating the channel state in the blockchain, the open
and close procedure still demands the involvement of all members in
this group. It is easy to set an administrator to manage the change of
members, but it introduces a centralized trust. A dynamic state channel
is also a potential research direction.

9.2. DoS attacks

In OWL, the DSP is vulnerable to DoS attacks from consumers. The
alicious provider might continually upload illegal data to pollute the
ata sharing pool. OWL is able to catch the evildoer and reorganize the
roup to exclude him to halt this attack. However, consumers are free
o request the DSP indefinitely, and OWL has no methods to hold it.
he work [8] uses anonymous payments and proof of work to alleviate

t. These methods can be implemented into our scheme. Furthermore,
e can also study the traceable anonymous payment scheme suitable

or data sharing.
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Fig. 11. The comparison between event-driven mechanism (Eved), epoch-based mechanism (Epob) and baseline mechanism (Base) in the number of on-chain operation and
verage data update validity. The first four number in 𝑋 axis represent time interval, 1 h, 6 h, 12 h and 24 h, respectively. The next four words represent the threshold 𝑇 ,
𝑜𝑤(1000), 𝑚𝑒𝑑𝑖𝑢𝑚(5000), ℎ𝑖𝑔ℎ(10, 000) and 𝑒𝑥𝑡𝑟𝑒𝑚𝑒(50, 000), respectively, where the impact factor 𝛼 = 0.01. The words ‘‘base’’ denotes scheme Base, this mechanism means any
pdate will trigger the on-chain operation.
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0. Conclusion

To address the privacy and integrity concerns in the existing data-
haring, we proposed OWL, a data-sharing scheme with integrity and
ontrollable anonymity for group users. We designed traceable data
tructures along with traceable ring signatures to achieve controllable
nonymity that can catch the malicious provider while protecting
he honest providers. Vector commitment is used to ensure data in-
egrity and prevent privacy leakage. OWL employs the blockchain to
tore auxiliary information and uses the state channel to alleviate the
ontradiction between the poor throughput of blockchain and the high-
requency data update. Methods are proposed to resolve the concurrent
onflicts among group users in a single state channel. Our evaluation
emonstrates the utility of OWL. We also discuss the limitations of OWL
n terms of dynamics and DoS attack, which would be addressed in
uture work.
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ppendix. Building blocks

The original definition of vector commitment [47] consists of algo-
ithms (𝖵𝖢.𝖪𝖾𝗒𝖦𝖾𝗇, 𝖵𝖢.𝖢𝗈𝗆, 𝖵𝖢.𝖮𝗉𝖾𝗇, 𝖵𝖢.𝖵𝖾𝗋, 𝖵𝖢.𝖴𝗉𝖽𝖺𝗍𝖾,
𝖢.𝖯𝗋𝗈𝗈𝖿𝖴𝗉𝖽𝖺𝗍𝖾) such that:

• 𝖵𝖢.𝖪𝖦𝖾𝗇(1𝑘, 𝓁,v). Given the security parameter k and the size v of the
committed vector with v = poly(k), the key generation outputs some
public parameters 𝗉𝗉.

• 𝖵𝖢.𝖢𝗈𝗆(𝗉𝗉, 𝑚1, 𝑚2,… , 𝑚𝑣). On input a sequence of 𝑣 messages
𝑚1,… , 𝑚𝑣 ∈  ( is the message space) and the public parameters
𝗉𝗉, the algorithm outputs a commitment string 𝐶 and an auxiliary
information 𝖺𝗎𝗑.

• 𝖵𝖢.𝖮𝗉𝖾𝗇(𝑚, 𝑖, 𝖺𝗎𝗑). This algorithm is run by the committer to produce
a proof 𝑖 that 𝑚 is the 𝑖th committed message.

• 𝖵𝖢.𝖵𝖾𝗋𝖿(𝐶,𝑚, 𝑖, 𝛬𝑖). The verification algorithm accepts (i.e., it outputs
1) only if 𝛬𝑖 is a valid proof that 𝐶 was created to a sequence
𝑚1,… , 𝑚𝑞 such that 𝑚 = 𝑚𝑖.

• 𝖵𝖢.𝖴𝗉𝖽𝖺𝗍𝖾(𝐶,𝑚,𝑚′, 𝑖). This algorithm is run by the committer, takes
as input the old message 𝑚, the new message 𝑚′ and the position 𝑖.
It outputs a new commitment 𝐶 ′ together with an update information
𝑈 .

• 𝖵𝖢.𝖯𝗋𝗈𝗈𝖿𝖴𝗉𝖽𝖺𝗍𝖾(𝐶,𝛬𝑖, 𝑚′, 𝑖, 𝑈). This algorithm can be run by any user
who holds a proof 𝛬𝑖 for some message at position𝑗 w.r.t. 𝐶, and it
allows the user to compute an updated proof 𝛬𝑗 (and the updated
commitment 𝐶 ′) such that 𝛬′

𝑗 will be valid with regard to 𝐶 ′ which
contains 𝑚′ as the new message at position 𝑖. Basically, the value 𝑈
contains the update information.

The original definition of traceable ring signature [32] consists of
algorithms (𝖳𝖱𝖲.𝖪𝖦𝖾𝗇, 𝖳𝖱𝖲.𝖲𝗂𝗀𝗇, 𝖳𝖱𝖲.𝖵𝖾𝗋, 𝖳𝖱𝖲.𝖳𝗋𝖺𝖼𝖾) such that:

• 𝖳𝖱𝖲.𝖪𝖦𝖾𝗇(𝟣𝗄, 𝗇). Given the security parameter k and the number of
the group members 𝑛, the algorithm outputs ring public/private key
pairs (𝑡𝑝𝑘1, 𝑡𝑠𝑘1), (𝑡𝑝𝑘2, 𝑡𝑠𝑘2),… , (𝑡𝑝𝑘𝑛, 𝑡𝑠𝑘𝑛).

• 𝖳𝖱𝖲.𝖲𝗂𝗀𝗇(𝗆,𝖫, 𝗌𝗄𝗂). Given the message 𝑚 ∈ {0, 1}∗ with respect to tag
𝐿 = (𝑖𝑠𝑠𝑢𝑒, 𝑡𝑝𝑘𝑠), where 𝑡𝑝𝑘𝑠 = {𝑡𝑝𝑘1, 𝑡𝑝𝑘2,… , 𝑡𝑝𝑘𝑛}, and the private
key 𝑡𝑠𝑘𝑖, the algorithm outputs the signature 𝜎.

• 𝖳𝖱𝖲.𝖵𝖾𝗋𝖿 (𝗆,𝖫, 𝜎). Given the message 𝑚, tag 𝐿 and signature 𝜎. If all
checks are successfully completed, accept it and return 1, otherwise
reject it and return ⟂.

• 𝖳𝖱𝖲.𝖳𝗋𝖺𝖼𝖾(𝖫, 𝜎, 𝜎′). Given the tag 𝐿, two different signature𝜎 and 𝜎′

for different message 𝑚 and 𝑚′, respectively, the algorithm outputs the
tracing result. If only one 𝑢𝑠𝑒𝑟𝑖 meets, output the 𝑡𝑝𝑘𝑖, if all users meet,
output ‘‘linked’’, if more than one but not the whole, output ‘‘indep’’.

We have modified state channel [23] into an OWL-customized
multi-party state channel scheme, including (𝖲𝖢.𝖲𝖾𝗍𝗎𝗉, 𝖲𝖢.𝖮𝗉𝖾𝗇,
𝖲𝖢.𝖴𝗉𝖽𝖺𝗍𝖾, 𝖲𝖢.𝖢𝗅𝗈𝗌𝖾) such that:
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• 𝖲𝖢.𝖲𝖾𝗍𝗎𝗉(𝟣𝗄, 𝗇). Given the security parameter k and the number of
the group members 𝑛, the algorithm outputs public/private key pairs
(𝑝𝑘𝑖, 𝑠𝑘𝑖).

• 𝖲𝖢.𝖮𝗉𝖾𝗇(𝗉𝗄𝗌, 𝗍𝗉𝗄𝗌, 𝗌𝗂𝗀𝗇𝗌, 𝗋𝗌𝗂𝗀𝗇, 𝗂𝗇𝖿𝗈). On input the 𝑠𝑖𝑔𝑛𝑠, 𝑝𝑘𝑠 and 𝑑𝑎𝑡𝑎,
the algorithm first checks the validity of 𝑠𝑖𝑔𝑛𝑠 for 𝑑𝑎𝑡𝑎 with 𝑝𝑘𝑠. Then
set the owner of Channel via 𝑝𝑘𝑠, set the public information with 𝑖𝑛𝑓𝑜,
set the ring public key with 𝑡𝑝𝑘𝑠 and return 1. If not pass, return ⟂.
(𝑝𝑘𝑠 = {𝑝𝑘1, 𝑝𝑘2,… , 𝑝𝑘𝑛}, 𝑠𝑖𝑔𝑛𝑠 = {𝑠𝑖𝑔𝑛1, 𝑠𝑖𝑔𝑛2,… , 𝑠𝑖𝑔𝑛𝑛})

• 𝖲𝖢.𝖴𝗉𝖽𝖺𝗍𝖾(𝗋𝗌𝗂𝗀𝗇, 𝗂𝗇𝖿𝗈). On input the 𝑟𝑠𝑖𝑔𝑛 and 𝑑𝑎𝑡𝑎, the algorithm first
checks the validity of 𝑟𝑠𝑖𝑔𝑛 for 𝑑𝑎𝑡𝑎 with 𝑡𝑝𝑘𝑠. Then reset the public
information with 𝑖𝑛𝑓𝑜 and return 1. If not pass, return ⟂.

• 𝖲𝖢.𝖢𝗅𝗈𝗌𝖾(𝗌𝗂𝗀𝗇𝗌, 𝗋𝗌𝗂𝗀𝗇, 𝗂𝗇𝖿𝗈). On input the 𝑠𝑖𝑔𝑛𝑠, 𝑟𝑠𝑖𝑔𝑛 and 𝑖𝑛𝑓𝑜, the
algorithm first checks the validity of 𝑟𝑠𝑖𝑔𝑛 for 𝑑𝑎𝑡𝑎 with 𝑡𝑝𝑘𝑠 and
check the validity of 𝑠𝑖𝑔𝑛𝑠 with 𝑝𝑘𝑠 Then reset the public information
with 𝑖𝑛𝑓𝑜 and return 1. If not pass, return ⟂.
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